Does mid-treatment CBCT-guided patient repositioning during lung VMAT impact target coverage?

Dominique Mathieu, Marie-Pierre Campeau, Robert Doucet, Karim Zerouali, Stéphane Bedwani, Houda Bahig, Louise Lambert, Thi Trinh Thuc Vu, David Roberge, Edith Filion

Department of Radiation Oncology, Centre hospitalier de l’Université de Montréal, Montreal (QC), Canada

ABSTRACT

Purpose: The objectives of this study are to (1) quantify intrafraction motion (IFM) during lung volumetric-modulated arc therapy (VMAT) and (2) evaluate the impact of mid-treatment patient repositioning after cone beam computed tomography (CBCT) acquisition upon target coverage.

Method: This analysis included lung tumors treated with VMAT between April 2012 and June 2015 with 50-60 Gy in 3-5 fractions. Treatment planning consisted of a four-dimensional (4D) CT scan from which an internal target volume (ITV) delineation was performed. A 5 mm margin was added in all directions to obtain the final planning target volume (PTV). Treatment sessions were performed in supine position with a customized dual vacuum immobilization device (BodyFIX, Elekta, Stockholm, Sweden). All patients underwent pre and mid-treatment CBCTs to ensure proper repositioning. Following each CBCT, a two-step rigid registration was performed by an experienced radiation oncologist according to the planning CT, taking into account organs at risk (OARs). Bone shift was first assessed with a registration of the vertebrae adjacent to the lesion. Then, tumor shift was isolated with a soft tissue registration by aligning targets. IFM, combining bone and tumor shifts, was defined as the target displacement from pre to mid-treatment CBCT.
acquisition and was quantified in terms of anterior-posterior (AP), cranio-caudal (CC) and medio-lateral (ML) amplitudes as well as three-dimensional (3D) vector. For patients with IFM ≥ 5 mm, a post hoc dose calculation analysis was performed to assess target coverage impacts of mid-treatment CBCT-guided repositioning.

Results: Ninety-seven patients, totalizing 367 fractions, were included. Mean (±SD) overall treatment time was 53:02 ± 13:08 min. Mean time from pre to mid-treatment CBCT acquisition was 22:58 ± 5:33 min. Mean time to perform mid-treatment CBCT scan acquisition, registrations and couch repositioning was 15:49 ± 4:14 min. Mean IFM amplitudes were 0.9 ± 1.2 mm, 0.6 ± 1.0 mm and 0.6 ± 0.8 mm in the AP, CC and ML respectively. IFM was < 3 mm and < 5 mm in all directions in respectively 315/367 (86%) and 358/367 (98%) fractions. Mean 3D IFM vector was 1.5 ± 1.4 mm (max = 8.1 mm) and was < 5 mm in 354/367 (96%). Among the 13 fractions with IFM vector ≥ 5 mm, 11/13 (85%) were dominantly induced by a tumor shift. For all these fractions, dose calculation analysis of worst-case scenario indicates that ITV coverage would have remained ≥ 95% without mid-treatment CBCT-guided patient repositioning.

Conclusion: For 96% of fractions in patients immobilized with a customized BodyFIX dual vacuum bag, the IFM vector was within the 5 mm PTV margin used. Mid-treatment CBCT-guided couch repositioning did not significantly impact ITV coverage and prolonged treatment duration. Mid-treatment imaging may remain pertinent for selected patients with strict OAR dose constraints.

Keywords: volumetric-modulated arc therapy, intrafraction motion, tumor shift, bone shift, target coverage, cone beam computed tomography