INTRODUCTION

The aim is to evaluate inter observer variability in the proper identification of centrally located lung tumors and to evaluate the clinical applications of an anatomy visualization tool.

Central3D is an in-house software which uses available treatment planning contours to allow clinicians to visualize the GTV and OARs in an interactive 3D environment.

Central3D can be used by clinicians to:
- Measure minimum distance between two structures.
- Create surface projection maps.
- Display overlap of planning target volume (PTV) on a structure.
- Display isodoses of interests.

METHODS

Four radiation oncologists blindly classified 20 lung tumors treated by CyberKnife as:
- Peripheral vs central.
- Central vs ultra-central.
- D$_{\text{min}}$ from the GTV to the proximal bronchial tree (PBT).

RESULTS

Central/peripheral classification
- 3/20 discordant cases
- $\kappa = 0.81$

Central/ultra-central classification
- 5/20 discordant cases
- $\kappa = 0.58$

Mean (±SD) absolute difference in D$_{\text{min}}$ measures between clinicians and *Central3D* was 0.7 ± 0.8 cm (max = 3.9 cm).

Evaluation bias were induced by
- The rigid plane viewing used by clinicians (axial, sagittal, coronal view) which restricts proper 3D distance evaluation.
- Discordant identification of complex anatomy structure such as lobar bronchi bifurcation.

All cases of disagreement were reviewed using *Central3D* and consensus was obtained.

CONCLUSION

Classification of centrally located lung tumors is subject to inter observer variability.

Central3D can be a useful tool to assist clinicians in characterizing central lesions.

Dominique Mathieu, Vincent Cousineau Daoust, Alexis Lenglet, Édith Filion, Stéphane Bedwani, Houda Bahig, Laurent Bilodeau, Toni Vu, David Roberge, Marie-Pierre Campeau

Département de radio-oncologie, Centre hospitalier de l’Université de Montréal, Québec, Canada