Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: validation and resolution from phenylalanine

Pascal Lemoine†, Audrey Roy-Lachapelle†, Michèle Prévost§, Patrice Tremblay‡, Morgan Solliec† and Sébastien Sauvé∗∗

†Department of Chemistry, Université de Montréal, Montreal, QC, Canada

§NSERC Industrial Chair on Drinking Water, Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada

‡Phytronix Technologies, Québec, QC, Canada

∗Corresponding author. Phone: 514-343-6749. Fax: 514-343-7586. E-mail: sebastien.sauve@umontreal.ca
Table of contents

Page S-3, Figure S-1: Variability of the corona discharge current (µA) at constant corona discharge voltage (V).

Page S-3, Figure S-2: Effect of solvent pH on ANA-a analysis by LDTD-APCI-MSMS. (n = 3, SRM m/z 166.1 → 149.1)

Page S-4, Figure S-3: Degradation assessment of ANA-a under experimental conditions. (pH 11.5, n = 3, SRM m/z 166.1 → 149.1)

Page S-5, Figure S-4: Effect on ANA-a signal intensity/variability of analyte deposition solvent. (n = 8, SRM m/z 166.1 → 149.1)

Page S-5: Explanation of the 500 µg/L PHE concentration associated with a dense cyanobacterial bloom.

Page S-7, Figure S-5: Atrazine, caffeine, 17α-ethinylestradiol and CLO structures and corresponding M.W.s.

Page S-8, Figure S-6: Desorption profile of bloom matrix blank and Ana-a 1 µg/L in bloom matrix for SRM m/z 166.1 → 131.1 (a,b) and SRM m/z 166.1 → 149.1 (c,d)

Page S-9, Figure S-7: Matrix effect assessment for an external calibration with optimal conditions for Ana-a analysis (SRM m/z 166.1 → 149.1, n = 3, pH 11.5, 50 % MeOH with laser power at 20 %). Vertical error bars represent standard deviations from the mean.

Page S-10, Table S-1: Evaluation of CLO (10 µg/L) as an IS (n = 8, SRM m/z 406.1 → 101.1 and 166.1 → 149.1).
Figure S-1. Variability of the corona discharge current (µA) at constant corona discharge voltage (V).

Figure S-2. Effect of solvent pH on ANA-a analysis by LDTD-APCI-MSMS. (n = 3, laser power 20%, SRM m/z 166.1 → 149.1)
Figure S-3. Degradation assessment of ANA-a under experimental conditions. (pH 11.5, n = 3, laser power 20%, SRM m/z 166.1 → 149.1)
Figure S-4. Effect on ANA-a signal intensity/variability of analyte deposition solvent. (n = 8, SRM m/z 166.1 → 149.1)

Explanation of the 500 µg/L PHE concentration associated with a dense cyanobacteria bloom.

A qualitative measurement of phytoplankton abundance in a water body can be achieved by the Total Carbon : Chlorophyll a ratio, (C (g/L) : chl a (g/L)). This ratio evolves with changing conditions like sunlight, temperature and nutrient content. A ratio value of 30 is associated with eutrophic conditions, commonly associated with cyanobacterial blooms. The Total Carbon, and the protein content, are estimated to be about 50 % of the total phytoplankton biomass. This protein mass can be converted into a total amino acids concentration, with an average amino acid molar mass (135 g/mol). Generally, the PHE content in proteins (%) is around 3.5 %. The World Health Organization set a chl a concentration > 50 µg/L, related to a toxic biomass of cyanobacteria in drinking water, as a very high risk level causing adverse health effects, and noted that
an average concentration of 300 μg/L chl a is representative of cyanobacterial blooms in eutrophic conditions. With a starting value of 400 μg/L chl a, we can approximate a high PHE concentration generated in a bloom:

$$\text{Eq.1} \quad \frac{C(\mu g/L)}{\text{chl } a \ (\mu g/L)} = 30 = \frac{C(\mu g/L)}{400 \ \mu g/L} \quad \Rightarrow \quad C (\mu g/L) = 12000 \ \mu g/L$$

$$\text{Eq.2} \quad C (\mu g/L) = \text{proteins content (\mu g/L)} = 12000 \ \mu g/L$$

$$\text{Eq.3} \quad \frac{\text{proteins content (\mu g/L)}}{\text{average amino acid molar mass (g/mol)}} = \text{total amino acids concentration (\mu M)}$$

$$\frac{12000 \ \mu g/L}{135 \ \text{g/mol}} = 88.9 \ \mu M$$

$$\text{Eq.4} \quad \text{total amino acids concentration (\mu M)} \times \text{PHE relative abundance} = \text{PHE concentration (\mu M)}$$

$$88.9 \ \mu M \times 0.035 \text{ PHE} = 3.1 \ \mu M$$

$$\text{Eq.5} \quad \text{PHE concentration (\mu mol/L)} \times \text{PHE molar mass (g/mol)} = \text{PHE concentration (\mu g/L)}$$

$$3.1 \ \mu \text{mol/L} \times 165 \ \text{g/mol} = 513 \ \mu g/L$$
Figure S-5: Atrazine, caffeine, 17α-ethynylestradiol and CLO structures and corresponding M.W.
Figure S-6. Desorption profile of bloom matrix blank and Ana-a 1 μg/L in bloom matrix for SRM m/z 166.1 → 131.1 (a,b) and SRM m/z 166.1 → 149.1 (c,d)
Comparison of the ratio of bloom:solvent signal

<table>
<thead>
<tr>
<th></th>
<th>5 ppb</th>
<th>10 ppb</th>
<th>25 ppb</th>
<th>50 ppb</th>
<th>100 ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak area SRM m/z 166.1 → 149.1</td>
<td>0.600</td>
<td>0.616</td>
<td>0.614</td>
<td>0.537</td>
<td>0.518</td>
</tr>
</tbody>
</table>

Figure S-7. Matrix effect assessment for an external calibration with optimal conditions for Ana-a analysis (SRM m/z 166.1 → 149.1, n = 3, pH 11.5, 50 % MeOH with laser power at 20 %). Vertical error bars represent standard deviations from the mean.
Table S-1. Evaluation of CLO (10 µg/L) as an IS. (n = 8, SRM m/z 406.1 → 101.1 (CLO) and 166.1 → 149.1(ANA-a)).

<table>
<thead>
<tr>
<th>Replicate</th>
<th>ANA-a 25 µg/L Peak Area</th>
<th>CLO 10 µg/L Peak Area</th>
<th>Ratio (ANA-a/CLO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1008096</td>
<td>1091913</td>
<td>0.92</td>
</tr>
<tr>
<td>2</td>
<td>1222030</td>
<td>1232107</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>1174608</td>
<td>1166874</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>1256962</td>
<td>1265656</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>1121622</td>
<td>1166560</td>
<td>0.96</td>
</tr>
<tr>
<td>6</td>
<td>1078096</td>
<td>1131095</td>
<td>0.95</td>
</tr>
<tr>
<td>7</td>
<td>1299956</td>
<td>1219478</td>
<td>1.06</td>
</tr>
<tr>
<td>8</td>
<td>1074504</td>
<td>1025616</td>
<td>1.05</td>
</tr>
<tr>
<td>Average</td>
<td>1154484</td>
<td>1162412</td>
<td>0.99</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>100976</td>
<td>78808</td>
<td>0.048</td>
</tr>
<tr>
<td>% RSD</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

References

